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Premise

This lecture is largely based on the chapter by F. Vanderbeck and L.
Wolsey. Reformulation and Decomposition of Integer Programs. In
M. Junnger, Th.M. Liebling, D. Naddef, G.L. Nemhauser, W.R.
Pulleyblank, G. Reinelt, G. Rinaldi, and L.A. Wolsey, editors, 50 Years of
Integer Programming 1958− 2008. Springer, Berlin, 2010.
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Definitions and Notation

Given an initial formulation of an IP, knowledge of problem structure can
be used to obtain improved problem formulations and more effective
algorithms.

(IP) min{cx : x ∈ X} where X is a discrete solution set that can be
modeled as the set of integer points satisfying a set of linear
inequalities.

X = P ∩ Zn with P = {x ∈ Rn
+ : Ax ≥ a}

Definition

A polyhedron P ⊆ Rn is the intersection of a finite number of half-spaces.
There exists A ∈ Rm×n, a ∈ Rm such that P = {x ∈ Rn : Ax ≥ a}.

Definition

A polyhedron P is a formulation for X if X = P ∩ Zn
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Definitions and Notation

Definition

Given X ⊆ Rn, the convex hull of X , denoted conv(X ), is the smallest
closed convex set containing X .

Definition

An extended formulation for a polyhedron P ⊆ Rn is a polyhedron
Q = {(x ,w) ∈ Rn+p : Gx + Hw ≥ d} such that P = projx(Q).

Definition

Given a non-empty polyhedron P ⊆ Rn, i) x ∈ P is an extreme point of P
if x = λx1 + (1− λ)x2, 0 < λ < 1, x1, x2 ∈ P implies that x = x1 = x2.
ii) r is a ray of P if r 6= 0 and x ∈ P implies x + µr ∈ P for all µ ∈ R+.
iii) r is an extreme ray of P if r is a ray of P and r = µ1r1 + µ2r2,
µ ∈ R2

+ \ {0}, r1, r2 rays of P implies r1 = αr2 for some α > 0.
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Minkowski Theorem

Theorem

(Minkowski) Every polyhedron P = {x ∈ Rn : Ax ≥ a} can be represented
in the form
P = {x ∈ Rn : x =

∑
g∈G λgxg +

∑
r∈R µrvr ,

∑
g∈G λg = 1, λ ∈

R|G |+ , µ ∈ R|R|+ }
where {xg}g∈G are the extreme points of P and {v r}r∈R the extreme rays
of P.

Definition

An extended formulation for an IP set X ⊆ Zn is a polyhedron Q ⊆ Rn+p

such that X = projx(Q) ∩ Zn.

Definition

An extended formulation Q ⊆ Rn+p for an IP set X ⊆ Zn is tight if
projx(Q) = conv(X ).
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equivalent of Minkowski Theorem for IPs

Definition

An extended IP-formulation for an IP set X ∈ Zn is a set
QI = {(x ,w1,w2) ∈ Rn ×Zp1 ×Rp2 : Gx + H1w1 + H2w2 ≥ b} such that
X = projxQI .

Theorem

Every IP set X = {x ∈ Zn : Ax ≥ a} can be represented in the form
X = projx(QI ), where

QI = {(x , λ, µ) ∈ Rn × Z|G |+ × Z|R|+ :
x =

∑
g∈G λgxg +

∑
r∈R µrvr ,

∑
g∈G λg = 1}

where {xg}g∈G is a finite set of integer points in X and {v r}r∈R the
extreme rays of conv(X ) (scaled to integrality).

Reformulations of Integer Programs () 7



Decompositions

Consider a (minimization) problem (IP) min{cx : x ∈ X} with the
property that a subset of the constraints of X defines a set Z ⊂ X over
which optimization easier.

(IP) min{cx : Dx ≥ d ,Bx ≥ b, x ∈ Zn
+}

where the constraints Bx ≥ b define a set Z = {x ∈ Zn
+ : Bx ≥ b} that is

”tractable”.

In many cases B has a block diagonal structure, i.e.,
Z = Z 1 × Z 2 × . . .ZK an IP has the form:

min c1x1 + c2x2 + . . . + cnxn

D1x1 + D2x2 + . . . + Dnxn ≥ d
B1x1 + ≥ b1

+ B2x2 ≥ b2

. . .
+ BKxK ≥ bK

x1 ∈ Zn1
+ , x2 ∈ Zn2

+ , . . . xK ∈ ZnK
+ .
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Decompositions

In the case of identical sub-problems we have
DK = D, BK = B, cK = c , ZK = Z ∗ for all K . We can define the
aggregate variables y =

∑K
k=1 xk and the problem is:

(IP) min{cy : Dy ≥ d , y =
K∑

k=1

xk , xk ∈ Z ∗, k = 1, . . . ,K}
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Lagrangean relaxation

The idea is to turn the difficult constraints Dx ≥ d into constraints that
can be violated at a non-negative price π.

Definition

Lagrangean sub-problem:
L(π) = minx{cx + π(d − Dx) : Bx ≥ b, x ∈ Zn

+}.

For any π ≥ 0, L(π) defines a lower bound on the optimal value z of IP.
Indeed the optimal solution x∗ satisfies: cx∗ ≥ cx∗ + π(d − Dx∗) ≥ L(π).
The problem of maximizing this bound over vectors π ≥ 0 is known as the
Lagrangean dual:

Definition

Lagrangean dual: zLD = maxπ≥0 L(π) = maxπ≥0 minx∈Z{cx + π(d −Dx)}
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Lagrangean relaxation

Assuming that Z is non-empty and bounded, the Lagrangean sub-problem
achieves its optimum at an extreme point x t ∈ conv(Z ), so one can write

zLD = max
π≥0

min
t=1,...,T

cx t + π(d − Dx t),

where {x t}t=1,...,T is the set of extreme points of conv(Z ). Introducing an
additional variable σ representing a lower bound on (c − πD)x t , we get:

zLD = maxπd + σ

πDx t + σ ≤ cx t t = 1, . . . ,T

π ≥ 0, σ ∈ R
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Lagrangean relaxation

zLD = maxπd + σ

πDx t + σ ≤ cx t ∀t

π ≥ 0, σ ∈ R

Taking the dual:

zLD = min
T∑
t=1

(cx t)λt

T∑
t=1

(Dx t)λt ≥ d

T∑
t=1

λt = 1

λt ≥ 0, ∀t.

Theorem

Lagrangean duality: zLD = min{cx : Dx ≥ d , x ∈ conv(Z )}

(conv(Z ) = {x =
∑T

t=1 x tλt :
∑T

t=1 λt = 1, λt ≥ 0, t = 1, . . . ,T})
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Lagrangean relaxation - sub-gradient algorithm

The sub-gradient algorithm for the Lagrangean dual in form:
zLD = maxπ≥0 mint=1,...,T{cx t + π(d − Dx t)}

Initialize π0 = 0, t = 1.

At iteration t, solve the Lagrangean subproblem to obtain the dual
bound L(πt) = min{cx + πt(dDx)} and an optimal solution x t .

Compute the violation of the dualized constraints (d − Dx t); this
provides a ”sub-gradient” that can be used to modify the dual
variables.

Update the dual solution using πt+1 = max{0, πt + εt(d − Dx t)}
where εt is an appropriately chosen step-size.

If t ≤ τ , increment t and iterate.
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Lagrangean relaxation - sub-gradient algorithm

Usually a normalized step-size is used:

εt =
αt

||d − Dx t ||
(1)

When the αt form a divergent series: αt → 0 and
∑

t αt →∞
convergence of the sub-gradient method is guaranteed.
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Dantzig-Wolfe reformulations

Consider problem IP : min{cx : Dx ≥ d , x ∈ Z}, and assume Z is
bounded. From Minkowski Theorem we have:

Definition

Dantzig-Wolfe reformulation: convexification approach DWc

min
∑
g∈G c

(cxg )λg∑
g∈G c

(Dxg )λg ≥ d

∑
g∈G c

λg = 1

x =
∑
g∈G c

xgλg ∈ Zn

λg ≥ 0, g ∈ G c

where {xg}g∈G c are the extreme points of conv(Z ).
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Dantzig-Wolfe reformulations

From the Minkowski Theorem for IPs we have:

Definition

Dantzig-Wolfe reformulation: discretization approach DWd

min
∑
g∈Gd

(cxg )λg∑
g∈Gd

(Dxg )λg ≥ d

∑
g∈Gd

λg = 1

λg ∈ {0, 1}, g ∈ Gd

where {xg}g∈Gd are all the points of Z .

In general the extreme points of conv(Z ) are a subset of the points of
Z .The two approaches are equivalent when considering LP relaxations.

Reformulations of Integer Programs () 16



Dantzig-Wolfe reformulations

The Lagrangean dual problem is the same as the LP relaxation of
DWc ;

zDWc
LP = zDWd

LP = min{cx : Dx ≥ d , x ∈ conv(Z )} = zLD .

When there is block diagonal structure, the DWd reformulation is:

min
K∑

k=1

∑
g∈Gd

k

(ckxg )λkg :
K∑

k=1

∑
g∈Gd

k

(Dkxg )λkg ≥ d ;
∑
g∈Gd

k

λkg = 1,

λkg ∈ {0, 1}, k = 1, . . . ,K , g ∈ Gd
k }

where Z k = {xg}g∈Gd
k

for all k, with xk =
∑

g∈Gd
k

xgλkg ∈ Z k .
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Dantzig-Wolfe reformulations

When the subproblems are identical, in order to avoid symmetry, we use an
aggregate variable νg =

∑K
k=1 λkg . Defining Z ∗ = Z 1 = . . . = ZK and

Z ∗ = {xg}g∈G∗ we get:

min
∑
g∈G∗

(cxg )νg∑
g∈G∗

(Dxg )νg ≥ d

∑
g∈G∗

νg = K

νg ∈ Z, g ∈ G ∗

where νg is the number of copies of xg in the solution. By projecting ν on
the original space we can only have the aggregate variables
y =

∑K
k=1 xk =

∑K
k=1

∑
g∈G∗ xgλkg =

∑
g∈G∗ xgνg .
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Dantzig-Wolfe reformulation of the cutting stock model

We use integer variables xij , i = 1, . . . ,m, j = 1, . . . , n, denoting the
number of copies of items of class i inserted into bin j ; and binary
variables yj , j = 1, . . . , n, taking value 1 when bin j is used.

min
n∑

j=1

yj

n∑
j=1

xij = di , i = 1, . . . ,m

m∑
i=1

wixij ≤ Cyj , j = 1, . . . , n

xij integer , yj ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n
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Solving the Dantzig-Wolfe LP relaxation by Column
Generation

Consider the LP relaxation of DWc or DWd (master problem, MP) and
suppose that only a subset {xg}g∈G ′ , with G ′ ⊂ G , are known. This is
denoted as restricted master problem (RMP).

(MP)

min
∑
g∈G

(cxg )λg∑
g∈G

(Dxg )λg ≥ d

∑
g∈G

λg = 1

λg ≥ 0, g ∈ G

The dual of the MP reads:

maxπd + σ

πDxg + σ ≤ cxg , g ∈ G

π ≥ 0, σ ∈ R

Let λ′ and (π′, σ′) be a primal-dual
solution of the RMP.
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Solving the Dantzig-Wolfe LP relaxation by Column
Generation

Given a dual solution (π′, σ′) to the RMP, the reduced cost of the
column associated with xg is cxg − π′Dxg − σ′.
Let ζ = ming∈G (cxg − π′Dxg ) = minx∈Z (c − π′D)x . Pricing can be
carried out implicitly by solving a single integer program over the set
Z.

RMP is solved when ζ − σ′ = 0, i.e., when there is no column with
negative reduced cost (eq., all dual constraints are satisfied).

The pricing problem is equivalent to the Lagrangean sub-problem:
L(π′) = minx∈Z{cx + π′(d − Dx)}; hence, each pricing step provides
a Lagrangean dual bound (by adding π′d).

Equivalently, (π′, ζ) is a feasible solution of the dual of the RMP, and
therefore π′d + ζ gives a lower bound on zRMP .
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Column generation algorithm

Initialize primal and dual bounds PB = +∞, DB = −∞. Generate a
subset of points xg so that the RMP is feasible.

Iteratively, solve the RMP over the current set of columns; if the
primal solution defines an integer solution, update PB. If PB = DB,
stop.

Solve the pricing problem ζ = minx∈Z (c − π′D)x . Let x be an
optimal solution. If ζ − σ′ = 0, set DB = zRMP and stop; otherwise,
add x to G ′ and include the associated column in the RMP.

Compute the dual bound: L(π) = πd + ζ; update
DB = max{DB, L(π)}. If PB = DB, stop.
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Solving the Dantzig-Wolfe LP relaxation by Column
Generation

When problem IP has a block diagonal structure, the dual constraints
are: πDkxg + σk ≤ ckxg , g ∈ G k , k = 1, . . . ,K and the kth

subproblem is ζk = minx∈Z k (ck − π′Dk)x . The dual lower bound is of

the form π′d +
∑K

k=1 ζ
k .

When the K subproblems are identical, this bound takes the form
π′d + Kζ.
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Stabilization of column generation

Convergence of column generation can be very slow, mainly because of:

primal degeneracy;

oscillations in the values of the dual variables π.

[P]

min cx

Ax = b

x ≥ 0

[D]

max bπ

πA ≤ c
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Stabilization of column generation

One way to overcome degeneracy is to perturb [P] by adding bounded
surplus and slack variables:

[Pε] min
x ,y−,y+≥0

{cx : Ax − y− + y+ = b, y− ≤ ε−, y+ ≤ ε+}

In addition, it is possible to reduce dual variables oscillations by narrowing
the domain of the dual problem [D]:

[Pδ] min
x ,y−,y+≥0

{cx + δy− + δy+ : Ax − y− + y+ = b}

This is equivalent to impose in the dual that: −δ ≤ π ≤ δ.
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Stabilization of column generation

A possible way of merging the two approaches was proposed by du Merle
et al. (DAM 194, 1999):

[P̃]

min cx + δy− + δy+

Ax − y− + y+ = b

y− ≤ ε−
y+ ≤ ε+

x , y−, y+ ≥ 0

[D̃]

max bπ − ε−w −− ε+w+

πA ≤ c

−π − w− ≤ −δ−
π − w+ ≤ δ+

w−,w+ ≥ 0
In [P̃], y are slack and surplus variables with bounds ε, and they are
penalized in the objective function by δ.
In [D̃], we have δ− − w− ≤ π ≤ δ+ + w+, thus we penalize π when they
lie outside the interval [δ−, δ+].
[P̃] = [P] when either ε− = ε+ = 0, or δ− < π < δ+.
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