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(Mixed) Integer Linear Programming
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Traditional cut generation

Ip(P) min c¢’'x

Dx<d
Bx<b

x =0

Given a fractional solution to the Ip(P), choose a subset of
constraints, e.g. Bx < b, and derive valid inequalities
implied by these constraints and the integrality of x.



Dantzig-Wolfe decomposition (of IPs)

Partial convexification of a subset of the constraints, e.g., Bx < b.
By defining Z = {x: Bx < b, x integer}, we define DW(Ip(P)) as:

min ¢'x
Dx<d

x € conv{Z}
x =0

This is equivalent to (implicitly) impose all valid inequalities for the subset
of constraints Bx < b .

Traditionally applied to “well” structured problem:s.
Problem defined by the subset of constraints can be “easily” managed.



Dantzig-Wolfe decomposition

Assuming that conv{Z} is bounded and denoting as I/ the set of its
vertices, constraint x € conv{Z} means that x can be expressed as a
convex combination of the vertices z € IV (Minkowski theorem):
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Thus we have an extended formulation in the exponentially many
A%, z € V variables.



Block-diagonal structure

min cx
| Dx ] <a
[Bx1]
< b
| B*xk|
x =0

Where x = x1 + x2 + --- + xk.

Letting Z"= {x": BRx" < b", x" integer},

the problemis: {mincx, Dx < d, xhe zh h =1, .., k}.
E.g. Bin Packing Problem.



Partial block-diagonal structure
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One additional linking constraint every time a variable is duplicated.
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Partial block-diagonal structure

min cx
Dx<d
Xj = Xx;", j=1,..,n,Vh:j € Gy

x" € conv{Z,}, Vh

Assuming that sets Zh = {xh: B'xh < ph xh integer} are bounded,
and applying Mincowksi theorem,x™ can be expressed as convex
combination of the vertices z* € V" of conv{Z,}.

G, - index set of the variables that appear in group 4 with a non-zero
coefficient.



DW reformulation

min cx
Dx<d
Ph
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G, - index set of the variables that appear in group 4 with a non-zero
coefficient.



Column Generation
Ph
v = Z zm" j=1,.,nVhj€EG, —>T,

szh=1 vh — > Vn

zheyh

We consider the LP relaxation of the reformulated problem and initialize it
with a subset of the A variables.

For every block h, new variables with negative reduced cost can be generated
through the following (M)ILP, by introducing integer variables z;, j € Gp:

max iz

B"z < b"
Z integer



Branch and Price

The solution to the LP relaxation of the DW reformulation can be fractional.
Integrality can be enforced via branching.

Branch and Price can be conveniently implemented by branching directly on
the original x variables.

mincx
Dx<d
Ph
Xj = Z]h)\zh ji=1,..,n, Vh:j € Gy,
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How should the constraint Matrix be
decomposed?

arrowhead form

Linking
variables

Linking constraints: Dx<d




How should the constraint Matrix
be decomposed?

How many constraints shold be kept as linking constraints? Which
ones?

How many groups should be considered for the contraints to be
convexified?

How should the constraints be grouped toghether?

How to reduce the number of linking variables (duplicated variables)?



How should the constraint Matrix
be decomposed?

Once the number of groups k for the contraints to be convexified is
decided (this is a big issue!), the remaining question is:

- which constraint goes in which group?
- which constraints are kept as linking constraints?
-> solve a suited ILP model minimizing the number of duplicated variables;

-> solve a partitioning problem for the vertices of a suited (hyper)-graph.



How should the constraint matrix be
decomposed?

Define an hyper-graph H where:

- there is one node for every non-zero coefficient of the constraint matrix;

- there is a weighted hyper-edge connecting all nodes for non-zero entries
in a given row, and a weighted hyper-edge connecting all nodes for non-
zero entries in a given column.

Solve a min-cut (equi) k-partitioning on H




How should the constraint Matrix
be decomposed?

Solve a min-cut (equi) k-partitioning on H

Split variable hyper-edge
is a linking variable
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2-partitioning



How should the constraint Matrix
be decomposed?

Solve a min-cut (equi) k-partitioning on H

Split constraint hyper-edge
is a linking constraint

——

2-partitioning



How to compare two decompositions?

Suppose we have several decompositions, which one is the best promising

one, i.e., the one that we espect to give the best bound without being “too
difficult” to solve?

Less linking variables, less linking constraints, high density of the blocks:

Border measure B
Average block density D




An Algorithm for the Automatic DW
Decomposition of MIPS

Construct the hypergraph H associated with the constraint matrix;

Produce several decompositions of the constraint matrix by computing a
min k-equicut of H through a heuristic algorithm (H-Metis). Each
decomposition is obtained by specifying:

- the number of blocks k;
- weights for row and column hyper-edges in H.

Compare the decompositions and select the one having the smallest B.
(1-D) value;

Duplicate the linking variables and obtain a block-diagonal constraint
matrix;

Apply DW-decomposition.



Computational experiments

The aim of these experiments is to show that DW reformulation of general
MIPs can produce strong bounds, comparable with those produced by
cutting plane procedures embedded in state-of-the-art MIP solvers.

In particular, the method can be very effective on some instances where
cutting planes are weak, that is, it can be used in as an alternative to cutting
plane methods.

We considered 23 problems from the miplib 2003 and 16 additional
problems from the benchmark subset of the miplib 2010, having:

* |ess than 20,000 non-zero coefficients;
* density is between 0.05% and 5%;
* Atleast 20% of integer or binary variables.



Computational experiments

Experiments were performed on one core of a i7 computer with 4 GB ram
under linux operating system, with a time limit of 1 hour.

LPs and column generation problems (MIPS) where solved with Cplex12.2

We compare the bound obtained by the DW reformulation (DW) and the
bound obtained by CPLEX12.2 at the root node of its Branch and Cut (Root),
that is, after that cuts to strengthen the LP relaxation of the original
problem have been added.

When the column generation does not converge within time limit, where
are still able to compute a (weaker) valid dual bound via the violation of the
slave problems.



Computational experiments - miplib 2003
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Conclusions

Proof of concept: DW reformulation of general MIPs che be very effective
in producing strong bounds, in particular where Cutting Plane is not
effective.

We provided an authomatic framework for computing the DW
reformulation of general MIPs, which does not need ad hoc tuning.

Future work should consider the automatic detection of those instances
where to applying DW reformulation instead of Cutting Planes methods is
more effective.



