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Map Coloring 

n  Color the map of England, in such a way that no two 
counties touching with a common stretch of boundary 
are given the same color, by using the smallest number 
of colors. 

n  the Four Color Conjecture was proposed by Francis 
Guthrie in 1852. 



Scheduling 

n  Consider the following problem: in a university, assign exams to time 
slots in such a way: 

    1)  every student can do the exams of the courses he is taking; 
    2)  the total number of used time slots is minimized. 
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n  Problem: assign a frequency to broadcast emitting 
stations in such a way that interfering stations use different 
frequencies. 

Frequency assignment 



Air Traffic Control 

n  Aircrafts are approaching an airport. The traffic control 
system assigns them an altitude, where they wait their 
landing time. If the arrival intervals of two planes overlap, 
they cannot use the same altitude. The available 
altitudes are limited, and have to be assigned efficiently. 

n  Equivalent: Train Platforming. 
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Outline 
n  Vertex Coloring Problem (VCP) 

n Definition 
n Applications 
 

n  Constructive Heuristics 
 
n  Descriptive Model and Algorithms 
 
n  Set-Covering Model and Algorithms 
 
n  Meta-heuristics: Tabu Search 
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Vertex Coloring Problem (VCP) 
n  Given an undirected graph G=(V,E) with n = |V| and m = |E|, assign a 

color to each vertex in such a way that colors on adjacent vertices are 
different and the number of colors used is minimized . The chromatic 
number χ is the minimum number of colors which can be used. 

n  A set of vertices receiving the same color is called a color class. 

n  The VCP is NP-Hard (Garey and Johnson, 1979) and has several 
real-world applications such as: timetabling, register allocation, 
frequency assignment, scheduling, etc… 



Vertex Coloring Problem 

VCP applications: scheduling 
n  Consider the following problem: in a university, assign exams to time 

slots in such a way: 
    1)  every student can do the exams of the courses he is taking; 
    2)  the total number of used time slots is minimized. 
 
i.e.  Color the graph G=(V, E) where: 
       V = {exams} 
       E = {(i,j) s.t. it exists a student taking both courses i and j} 
And one color corresponds to a time slot. 
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Vertex Coloring Problem 

VCP applications: scheduling 
n  Consider the following problem: in a university, assign exams to time 

slots in such a way: 
    1)  every student can do the exams of the courses he is taking; 
    2)  the total number of used time slots is minimized. 
 
i.e.  Color the graph G=(V, E) where: 
       V = {exams} 
       E = {(i,j) s.t. exists a student taking both courses i and j} 
And one color corresponds to a time slot. 
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n  Problem: assign a frequency (color) to broadcast emitting 
stations in such a way that adjacent (and possibly 
interfering) stations use different frequencies (colors). 

VCP applications: frequency assignment 
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How difficult is the VCP in practice? 

Some NP-Hard problems can be solved to optimality for instances 
of reasonable size: 
 
TSP-> thousands of nodes (cutting planes) 
BPP-> up to 1000 items (Branch and Bound, Branch and Price) 
 
 
VCP is really difficult from the practical viewpoint: it cannot be 
consistently solved to optimality for graphs with more than 100 
vertices. 
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Greedy Algorithms for the VCP 
SEQ Algorithm: Vertex 1 is assigned to the first color class, and 

thereafter, vertices 2,…,n are assigned to the lowest indexed color 
class that contains no adjacent vertex. 

 

DSATUR is similar to SEQ, but dynamically chooses the vertex to 
color next, picking the first vertex that is adjacent to the largest 
number of distinctly colored vertices (i.e. the vertex with maximum 
chromatic degree). 
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The clique bound  
n  A clique K is a complete subgraph of the original graph. The 

cardinality of a clique is a lower bound on the chromatic 
number χ. A clique is maximal if one can add no vertex still 
having a clique. The cardinality of the maximum clique is 
denoted by ω, thus χ ≥ ω. Computing ω is NP-Hard. 
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maximal clique k2, |k2|=4= ω 
maximal clique k3, |k3|=3 
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The clique bound  
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clique) |K| = |Kmax| = 2 
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The worst case ratio χ/ω can be arbitrarily bad. 
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Mycielski graph µ(G) 
Let the n vertices of the given graph G be v0, v1, etc. The Mycielski graph of G 
contains G itself, together with n+1 additional vertices: a vertex ui corresponding 
to each vertex vi of G, and another vertex w. Each vertex ui is connected by an 
edge to w. In addition, for each edge (vi,vj) of G, the Mycielski graph includes two 
edges, (ui,vj) and (vi,uj). 

if G is triangle free à µ(G) is triangle free 

χ(µ(G)) = χ(G)+1 

source: wikipedia 
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An early exact algorithm 
n  DSATUR (Branch and Bound - Brèlaz, 1979) 
n  Let UB be an upper bound on χ. Each sub-problem corresponds to a 

partial coloring of the graph. When this partial coloring uses k colors, 
and k≥UB, the sub-problem can be fathomed; 

n  When all the vertices are colored and k < UB, the upper bound is 
updated (by setting UB = k); 

n  From each sub-problem using k colors, up to k + 1 new sub-problems 
are generated, by assigning, when feasible, one of the k colors to the 
next vertex to be colored, and by coloring it with color k+1 if k+1<UB; 

n  At each iteration, the vertex adjacent to the largest number of colors 
is chosen as next vertex to be colored. 

n  A lower bound (maximal clique) is obtained at the beginning. 
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Vertex Coloring Problem 

n  Binary variables:                  1 if vertex i has color h       i=1,…,n 
                                                  0 otherwise                        h=1,…,n 
                                                  1 if color h is used 
                                                  0 otherwise 
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Vertex Coloring Problem 

Model (1) is a weak model: 
n  Its continuos relaxation has the useless solution of 

value 2:    y1 = 1, y2 = 1;    yh =0   h = 3,…,n 
                     xi1 = xi2 = 1/2                i=1,…,n 
                     xih = 0                           i=1,…,n     h=3,…,n 

ILP Model (1) for VCP 
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n  Binary variables:                  1 if vertex i has color h       i=1,…,n 
                                                  0 otherwise                        h=1,…,n 
                                                  1 if color h is used 
                                                  0 otherwise 
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)3(,...,1,max nhEcliqueKyx h
Ki
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∈

A stronger ILP model (1’) for VCP 

Constraints (3) are exponentially many -> cutting planes methods are needed; 
 
The separation of (3) is NP-Hard (however, we can use heuristics); 
 
Let K be the maximum clique of G, and |K| = k. The continuos relaxation of 

(1’) has the following solution of value k: 
y1 = 1,…, yk = 1;    yh =0   h = k+1,…,n 
xi1,…, xik = 1/k     i=1,…,n    xih = 0         i=1,…,n     h=k+1,…,n 
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n  Separation methods: useful when the number of constraints of a 
Linear Program is exponential, e.g. 

1) Impose a subset of the constraints, 
2) Solve the LP, get x*, 
3) If (at least) one constraint is violated by x*, add the constraint(s) to 

the LP and go to 2, 
4) x* is optimal and feasible (possibly fractional). 
 
n  Branch and Bound: useful to obtain an Integer Solution. 
n  Branch and Cut: at each node of the Branch and Bound tree, apply 

separation. 
 

Branch and Cut 
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A Branch and Cut Algorithm for the VCP    
Méndez-Díaz and Zabala, 2006-08 

They solve model (1) by trying to overcome its drawbacks: weak bound, symmetry 

 

The bound provided by the LP relaxation is strengthened by adding: Clique 
inequalities, Independent Set inequalities, Hole inequalities, Neighborhood 
inequalities, Block Color inequalities, Multicolor Path inequalities, Multicolor Clique 
inequalities.  

 

The symmetry of the formulation is reduced by means of symmetry breaking 
inequalities (in polynomial number): 

 yh ≥ yh+1  h=1,…,n-1       color h+1 can be used only if color h already used 

 

                   h=1,…,n-1   the cardinality of color class h cannot be smaller  
                                                     than the cardinality of color class h+1 
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Vertex Coloring Problem 

A Branch and Cut Algorithm for the VCP    
Méndez-Díaz and Zabala, 2006-08 

xih = 0 h ! i+1

xih " xkh#1
k=h#1

i#1

$ i %V \ {1}, 2 " h " i

The color classes are sorted by the minimum label of the vertices they 
include, and only colorings assigning color h to the h-th color class are 
considered. This model completely removes the symmetry due to color 
indistinguishability, and is obtained by imposing the additional constraints: 
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A Branch and Cut Algorithm for the VCP    
Méndez-Díaz and Zabala, 2006-08 

Branching rules: 
 
n  Binary branching on a fractional variable xih à very unbalanced 
 

n  DSATUR like branching: choose a yet uncolored vertex and then 
consider all colors used so far. A new sub-problem is then formulated 
for every feasible assignment of one of these colors to the selected 
vertex. An additional sub-problem which assigns the first unused 
color to the vertex, is also created. 

 



Vertex Coloring Problem 

Stable Sets 
n  A Stable Set of G=(V,E) is a subset of vertices such that there is no 

edge in E connecting any pair. It is maximal if it is not strictly included in 
any other stable set.  
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Feasible coloring -> partitioning of the graph in stable sets. 



Vertex Coloring Problem 

Cliques and Stable Sets 
n  Let                     be the complementary graph of 

G, i.e.                         . If K is a clique in G, it is a 
stable set in  
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Set Partitioning Formulation for VCP 
n  Feasible coloring -> partition of the graph in stable sets. S = family 

of all stable sets of G 
n  Binary variables:                  1 if stable set s is given a color 
                                                  0 otherwise 
 

                (1) 
       s.t. 

                 (2) 
 

                              (3) 

 
Constraints (2) can be replaced by:                                                    (2’) 
(less variables, dual stabilization) 
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Vertex Coloring Problem 

Set Covering Formulation for the VCP (ILP Model (2)) 

 
n  S can be defined as the family of all maximal Stable Sets in G.  
n  The continuous relaxation of this formulation leads to tight lower 

bounds and avoids symmetry in the solution. 
n  The number of maximal stable sets (i.e. the number of “columns”) is 

exponential w.r.t. the number of vertices n -> we need column 
generation. 
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Set Covering Formulation for the VCP: column 
generation 
 

To find a violated dual constraint (i.e., a variable to be added to the master), we 
need to solve the following Weighted Stable Set Problem (NP-Hard): 

 

Where π*
i are the optimal values of the dual variables (i.e., are constants in (4)-(6)). 
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n  Column generation methods: useful when the number of variables of 
a Linear Program is exponential, e.g. 

n  Branch and Bound: useful to obtain an Integer Solution. 
n  Branch and Price: at each node of the Branch and Bound tree, apply 

column generation techniques so as to generate only the variables 
needed. 

     Potential Problem à branching may change the sub-problem! 
 

Branch and Price 

Ssxs ∈∀≥ 0



Vertex Coloring Problem 

Branch and Price 
Variables: (stable) sets of vertices. 

Binary branching: choose a fractional variable xs and then: 
 

    1)  either    xs=1            all vertices i∈s receive the same color 

    2)  or          xs=0            not all vertices i∈s receive the same color 
  

àunbalanced 

àsub-problem is not a VCP anymore! 
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Branch and Price 
Branching rule (Zykov, 1949) 

 
Basic idea: at each node of the search tree we select two vertices i and j such 

that (i,j)    E. Then,  
 

1)   either add an edge between i and j, i.e. set E=E U (i,j), 

2)   or collapse i and j in a single vertex k such that if (i,h) ∈E or (j,h) ∈E, 
then (k,h) ∈ E. 

 
In both cases 1) and 2) the resulting problem is still a VPC, with 1) one more  
edge, or 2) one less vertex. 

∉

i j i j 
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Branch and Price Algorithms   

Mehrotra and Trick, 1996 
 
n  Column generation: the WSSP is solved through a heuristic algorithm. 

When this fails in finding a stable set with negative reduced cost, an 
exact algorithm is used. 

n  Branching: the input graph is modified according to the Zykov scheme. 
 
Gualandi and Malucelli, 2012  
n  Column generation: the WSSP is solved as a decision problem: find a 

stable set with negative reduced cost smaller than a given threshold, 
by using Constraint Programming techniques. When this fails, a ILP 
solver is used. 

n  Branching: the input graph is modified according to the Zykov scheme. 
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Branch and Price Algorithms   

M., Monaci and Toth, 2011  
Column generation:  
     1) detect possible negative reduced cost columns by considering the 

columns of a pool containing the independent sets found by a meta-
heuristic algorithm for VCP (MMT, 2008); 

     2) if no column is found, the WSSP is solved through a meta-heuristic 
algorithm (tabu search); 

     3) when this fails in finding a stable set with negative reduced cost, a  
ILP solver is used. 

n  Branching:  
     1) the input graph is modified according to the Zykov scheme; 
     2) binary branching on the most fractional variable. 
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Branch and Price Algorithms   

Held, Cook, Sewell (2012)  
 
The master problem is solved in exact arithmetic. 
n  Branching:  
     1) the input graph is modified according to the Zykov scheme; 
 
Column generation:  
n  The slave problem is solved by an exact Branch-and-Bound method 

for the MWSSP. 

They confirmed the correctness of previously published results.  
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DIMACS Benchmark Instances 
Johnson and Trick, 2nd DIMACS Implementation Challenge 1993 

n  DIMACS benchmark graph instances compose a variety of graph 
classes used for evaluating the performance of VCP algorithms: 

 
           - random graphs: DSJC_n.x; 
           - geometric random graphs: DSJR_n.x; r_n.x; 
           - quasi-random graphs: flat_n.x; 
           - artificial graphs: le_n.x; latin_square_10; Queen_rn.rn; myciel_k 
           - real-world application-related graphs. 
 
n  To allow comparisons on results obtained with different machines, a 

benchmark program is available. CPU times can be scaled w.r.t. the 
performance obtained on this program. 
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Computational Results for the Exact Approaches  
 
n  Algorithm DSATUR: Brèlaz (Comm. ACM, 1979), 
    Improved by Sewell (2nd DIMACS Implem. Challenge, 1993) 
    Implemented by Mehrotra and Trick (INFORMS J. on C., 1996) 
 
n  Branch and Cut Algorithm BC-Col (with the stronger lower bounding 

procedures):  
    Méndez-Díaz and Zabala (Disc. Appl. Math. 2006, 2008) 
 
n  Branch-and-Price Algorithm: Gualandi and Malucelli (2012) 

n  Branch-and-Price Algorithm: M., Monaci, Toth. (2011) 
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Mendéz-Díaz, Zabala (2006, 2008) G-M (2009) M-M-T (2009)
               SUN_ ULTRA 1 140 MHzSun ULTRA 1 140 MHz Intel Dual 1.8 GHz Pentium Iv 2.4 GHzium IV 2.4 GHz
BC-Col DSATUR

n opt LB UB time LB UB time LB UB time LB UB time
DSJC125.1       125 5 5 5 1 5 5 1 5 6 136 5 5 142
DSJC125.5       125 17 13 20 TL 9 19 TL 16 19 1274 17 17 18051
DSJC125.9       125 44 42 47 TL 29 45 TL 44 44 ? 44 44 3897
DSJC250.1       250 ? 5 9 TL 4 9 TL 6 9 TL 6 8 TL
DSJC250.5       250 ? 14 36 TL 9 35 TL 26 36 TL 20 28 TL
DSJC250.9       250 ? 48 88 TL 34 87 TL 71 73 178 71 72 TL
DSJC500.9 500 ? 59 161 TL 43 160 TL 123 ? 258 123 127 TL
le450_5d      450 5 5 10 TL 5 8 TL 5 6 TL 5 5 1
le450_15c      450 15 15 24 TL 13 23 TL 15 22 TL 15 15 TL
le450_15d      450450 15 15 23 TL 13 23 TL 15 23 TL 15 15 TL
queen8_8       64 9 9 9 3 9 9 18 9 9 25 9 9 4
queen9_9       81 10 9 11 TL 9 10 TL 9 10 33 10 10 37
queen10.10 100 11 10 12 TL 10 12 TL 10 11 463 11 11 687
queen11.11 121 11 11 14 TL 11 13 TL 11 12 TL
myciel6       95 7 5 7 TL 2 7 TL 4 ? 1 4 7 TL
myciel7       191 8 5 8 TL 3 8 TL 5 ? 8 5 8 TL
will199GPIA 701 7                        7 7 1 7 7 448 7 7 81
DSJR500.1 500 12 12 12 4 12 12 3 12 12 35
DSJR500.1c 500 85 80 88 TL 70 88 TL 85 85 289
DSJR500.5 500 122 119 130 TL 103 130 TL 122 122 342
wap01 2368 ? 41 46 TL 39 48 TL 40 43 TL
wap05 905 50 50 51 TL 27 51 TL 50 50 293
wap06 947 40 40 44 TL 33 45 TL 40 40 175
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Heuristic and Metaheuristic Approaches  
n  Greedy Algorithms: 
  - Sequential Coloring (SEQ) 
  - DSATUR: Brélaz (Comm. ACM 1979) 
  - Recursive Largest Fit: (RLF) Leighton (J. Res. NBS 1979) 
  - Backtracking: Bollobas, Thomason (Ann. Disc. Math. 1985) 
  - Iterated Greedy: Culberson, Luo (2nd DIMACS Implem. Challenge 1993) 
 
n  Simulated Annealing Algorithm: 
       Johnson, Aragon, Mc Geoch, Schevon (Oper. Res. 1991) 

     Morgenstern (2nd DIMACS Impl. Challenge 1993) 
 
n  Tabu Search Algorithms: 
   - TABUCOL: Hertz, de Werra (Computing 1987) 
          Improvements:  
             - Dorne, Hao (Metaheuristics:…, Kluwer 1998) 
             - Blöchliger, Zufferey (Computers & O.R. 2008) 
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n  Evolutionary Algorithms: 
   - Fleurent, Ferland (2nd DIMACS Impl. Challenge 1993) 
    - Davis (Handbook of Genetic Algs., Van Nostrand Reinhold 1998) 
    - Galinier, Hao (J. Comb. Opt. 1999) 
 
n  MIPS-CLR Algorithm:  Funabiki, Higashino (IEICE T.F. 2000) 
n  Variable Neighborhood Search Alg: Avanthay, Hertz, Zufferey (EJOR 

2003) 
n  Adaptive Memory Alg: Galinier, Hertz, Zufferey (D.A.M. 2008) 
n  Two-Phase Alg: M., Monaci, Toth (INFORMS J. on C. 2008) 
n  Variable Search Space Alg: Hertz, Plumettaz, Zufferey (D.A.M. 2008) 

Heuristic and Metaheuristic Approaches  
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Local Search Methods 

n  Definition of Solution:    s 
n  Definition of a Solution evaluating function:   f(s) 
n  Definition of a neighborhood:   N(s) 

Local Search (MIN problem):  
1) generate an initial solution s* 
2) s’ = argmins∈N(s*) f(s) 
3) if f(s’) < f(s*) then s*=s’, goto 2. Else stop. 
 
Tabu Search: local search which always moves on the best solution 

s’∈N(s), even if f(s’) ≥ f(s*). A Tabu List is used to avoid cycling. 
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Tabucol: a Tabu Search approach for the VCP 
(Hertz and de Werra ‘87) 
n  A target k is required for the number of colors to be used. A 

solution s is a partition of V in k color classes (with possible 
conflicts). Resolving all the conflicts gives a feasible k-coloring. 

n  The solution evaluating function f(s) is represented by the 
number of conflicts. 

n  A move consists in choosing one conflicting vertex and moving it 
to a new color class which minimizes the number of conflicts. 

n  To avoid cycling, a vertex can not enter the color class it left during 
the last T iterations (Tabu rule). 

s s’ 
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Tabu Search (M., Monaci and Toth, 2008) 
 
n  Impasse Class Neighborhood (Morgenstern 1996): a target k is 

required for the number of colors to be used. A solution s is a partition of 
V in k+1 color classes in which all classes except possibly the last one 
are stable sets. Making this last class empty gives a feasible k-
coloring. 

 
 
 

v v

w
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s s’ 

   To move from a solution s to a neighbor solution s’:   
                                   - randomly choose an uncolored vertex v (in class k+1) 

 
                                   - move all vertices w in this class, which are  
                                      adjacent to v, to the class k+1 
 

 

- assign v to a color class 
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Tabu Search approach MMT 

n  Objective function:  
n  Tabu Search:  
                        - move from s to the best solution s’ in the   

   neighborhood (even if f(s)<f(s’) ) 
                        - Tabu move: to avoid cycling, a vertex can not take 

the same color it took in the last T (tabu tenure) iterations 
  
n  Complexity of the Tabu Search: 
     time complexity of one iteration of the Tabu Search is O(n) in the 

worst case  
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