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Knapsack Problems
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Knapsack Problem - KP01

Given a set of m items, each item i = 1, . . . ,m having a positive profit pi
and a positive weight wi , and a knapsack of capacity C , select a subset of
items of maximum profit without exceeding the knapsack capacity.

We use binary variables xi , i = 1, . . . ,m, taking value 1 when item i is
selected and 0 otherwise. A possible ILP model reads:

max
m∑
i=1

pixi

m∑
i=1

wixi ≤ C

xi ∈ {0, 1}, i = 1, . . . ,m

How would you solve the continuos relaxation of the KP01?
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Bounded Knapsack Problem

Given a set of m item classes, each item class i = 1, . . . ,m having a
positive profit pi , a positive weight wi and available in di copies, and a
knapsack of capacity C , select a subset of items of maximum profit
without exceeding the knapsack capacity.

We use integer variables xi , i = 1, . . . ,m, denoting the number of times
item i is selected. A possible ILP model reads:

max
m∑
i=1

pixi

m∑
i=1

wixi ≤ C

0 ≤ xi ≤ di , integer , i = 1, . . . ,m
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Bounded Knapsack Problem

Two ways of solving the BKP as a KP01:

consider the equivalent KP01 problem where for each class i there are
di separated identical items i1, . . . , idi ;

consider an equivalent KP problem where for each class i there are
dlog die separated items il , l = 0, . . . , dlog die with pil = 2lpi ,

wil = 2lwi ; and the additional constraints:
∑dlog die

l=0 2lxil ≤ di .
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Bin Packing and Cutting Stock Problems

Bin Packing and Cutting Stock Problems
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Bin Packing Problem

Given a set of m items, each item i = 1, . . . ,m having a positive weight
wi , and n identical bins of capacity C , pack all items in the minimum
number of bins.
We use binary variables xij , i = 1, . . . ,m, j = 1, . . . , n, taking value 1
when item i is inserted into bin j ; and binary variables yj , j = 1, . . . , n,
taking value 1 when bin j is used.

M1-BPP min
n∑

j=1

yj

n∑
j=1

xij = 1, i = 1, . . . ,m

m∑
i=1

wixij ≤ Cyj , j = 1, . . . , n

xij , yj ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n
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Bin Packing Problem

What is the value z of the optimal solution of the continuos relaxation of
the M1− BPP?
How would you solve the continuos relaxation of M1− BPP?

z =

∑m
i=1 wi

C

yj = z/n, j = 1, . . . , n; xij = 1/n, i = 1, . . . ,m; j = 1, . . . , n

M1− BPP is a weak model: it provides a trivial (and far from the optimal
integer value) lower bound. In addition, the model is highly symmetric:
given an integer solution to M1− BPP of value k, we can construct

(n
k

)
k!

equivalent solutions.
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Cutting Stock Problem

Given a set of m items classes, where for each i = 1, . . . ,m there are di
identical copies with positive weight wi , and n bins of capacity C , pack all
items in the minimum number of bins.
We use integer variables xij , i = 1, . . . ,m, j = 1, . . . , n, denoting the
number of copies of items of class i inserted into bin j ; and binary
variables yj , j = 1, . . . , n, taking value 1 when bin j is used.

min
n∑

j=1

yj

n∑
j=1

xij = di , i = 1, . . . ,m

m∑
i=1

wixij ≤ Cyj , j = 1, . . . , n

xij integer , yj ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n
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Bin Packing Problem

Let consider the collection S ′ of subsets of items which can fit in one bin:

S ′ = {S ⊆ {1, . . . ,m} :
∑
i∈S

wi ≤ C}

A binary variable xS is associated with each one of the exponentially many
sets S , taking value one if the set is selected and 0 otherwise. The
corresponding Set Partitioning model reads:

SP-BPP min
∑
S∈S′

xS∑
S∈S′:i∈S

xS = 1, i = 1, . . . ,m

xS ∈ {0, 1}, S ∈ S ′

SP − BPP has O(2n) variables (collections represented as binary vectors).
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Bin Packing Problem

Let consider the collection S of maximal subsets of items which can fit in
one bin:

S = {S ⊆ {1, . . . ,m} :
∑
i∈S

wi ≤ C ,
∑

i∈S∪{j}

wi > C , ∀j /∈ S}

The Set Covering model for the BPP reads:

SC-BPP min
∑
S∈S

xS∑
S∈S:i∈S

xS ≥ 1, i = 1, . . . ,m

xS ∈ {0, 1}, S ∈ S

Observation - Models SP − BPP and SC − BPP are equivalent.
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Bin Packing Problem

Consider the following example of BPP:
n = 5, w = [7, 4, 1, 4, 4], C = 10.

How ”strong” is model SC − BPP?

For a given instance of BPP, Let z(LP(SC − BPP)) be the optimal
value of the continuos relaxation of model SC − BPP, and z∗(BPP)
the optimal value of the BPP (integer solution). How far are these
values in the worst case?

Conjecture - It does not exist an instance of BPP where:
dz(LP(SC − BPP))e+ 1 < z∗(BPP).

Model SC − BPP is not symmetric with respect to the bin selection.
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Cutting Stock Problem

Let consider the collection S of subsets of items which can fit in one bin:
they can be denoted by m-dimensional integer vectors aS such that

m∑
i=1

aSi wi ≤ C

where aSi is the number of copies of i in subset S (0-1 for the BPP). The
”Set Covering” model for the CSP reads:

SC-CSP min
∑
S∈S

xS∑
S∈S

aSi xS ≥ di , i = 1, . . . ,m

xS integer , S ∈ S
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Cutting Stock Problem

The dual of the LP-relaxation of the SC − CSP reads:

D(SC-CSP) max
m∑
i=1

diπi

m∑
i=1

aSi πi ≤ 1, S ∈ S

πi ≥ 0, i = 1, . . . ,m

The SC − CSP LP-relaxation is initialized with a subset of the columns
(variables). Given an optimal solution x∗, π∗ to the so-called restricted
master problem, we do not have optimality if it exists a violated dual
constraint (eq., a column with negative reduced cost) for some set S∗ ∈ S.

m∑
i=1

aS
∗

i πi > 1
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Column Generation for the SC-BPP

The column generation problem (slave problem) can be solved by
introducing binary variables zi denoting the number of copies of item i is
in S∗, and checking if the following system has a solution:

m∑
i=1

π∗i zi > 1

m∑
i=1

wizi ≤ C

0 ≤ zi ≤ di , integer , i = 1, . . . ,m

If such a subset does not exist, (x∗, π∗) is optimal.
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Column Generation for the SC-BPP

We can directly look for the column having the largest negative reduced
cost by solving the following ILP:

max
m∑
i=1

π∗i zi

m∑
i=1

wizi ≤ C

0 ≤ zi ≤ di , integer , i = 1, . . . ,m

Which is a bounded KP (01KP for the BPP) with profits π∗i , i = 1, . . . ,m.
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Branch and Price for the Bin Packing Problem

If the optimal solution of the CS − BPP is fractional, column generation is
embedded in a Branch-and-Bound scheme.

Choose two columns S and S ′ with 0 < xS < 1, 0 < x ′S < 1

Select two items i , j such that aSi = aSj = 1, aS
′

i = 1, aS
′

j = 0

Consider the two subproblems where: 1) i and j are collapsed into a
single item having weight wi + wj and 2) i and j cannot stay in the
same bin.

The resulting slave problems need to be modified as follows:

1 Is still a KP01 with one new item of weight wi + wj replacing i and j .

2 Is a KP01 with and additional incompatibility constraint: zi + zj ≤ 1.
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Branch and Price for the Cutting Stock Problem

Idea: find an item i , a value v ∈ {0, . . . , di} and a ”sense” ≥ or < such
that

∑
S :asi≥v

xS = α is fractional (or, eq., consider
∑

S :asi<v xS). Branch

by imposing:

1
∑

S:asi≥v
xS ≤ bαc

2
∑

S :asi≥v
xS ≥ dαe

In general we may need more than one item/level/sense (component
bounds) to have α fractional. Let f =

∑
S(xS − bxSc) and S(B) a set of

columns satisfying a set of component bounds B.

Proposition (Vanderbeck, 2000). Given a fractional solution x , there exists
a set of component bounds B with |B| ≤ dlog f e+ 1 such that∑

S∈S(B) xS is fractional.
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Branch and Price for the Cutting Stock Problem

We add the following valid inequality (with associated ψ variable) to each
node of the Branch-and-Price:∑

s∈S
xs ≥ LBnode (1)

where LBnode is the lower bound at the node. We can omit component
bounds B of kind ”<” because they are implied as complements of ”≥”.

Assume that one component bound suffice for branching. Let denote by
K = K1 ∪ K2 the set of branching constraints (≤ bαc and ≥ dαe), and
µk , k ∈ K1 and νk , k ∈ K2 the associated dual variables.
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Branch and Price for the Cutting Stock Problem

Let s(k), v(k) be the item and value associated with constraint k .

min
∑
S∈S

xS∑
S∈S

aSi xS ≥ di , i = 1, . . . ,m∑
s∈S

xS ≥ LBnode∑
S:aSi (k)≥v(k)

xS ≤ bαc, k ∈ K1
∑

S :aSi (k)≥v(k)

xS ≥ dαe, k ∈ K2

thus dual constraints read:

m∑
i=1

πia
S
s + ψ −

∑
k∈K1:aSs (k)≥v(k)

µk +
∑

k∈K2:aSs (k)≥v(k)

νk ≤ 1, S ∈ S
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Branch and Price for the Cutting Stock Problem

The slave problem is modified as follows:

max
m∑
i=1

π∗zi −
∑
k∈K1

gkµ
∗
k +

∑
k∈K2

hkν
∗
k + ψ (2)

(ds(k)− v(k) + 1)gk ≥ (zs(k) − v(k) + 1) k ∈ K 1 (3)

v(k)hk ≤ zs(k) k ∈ K 2 (4)

[bounded KP constraints] (5)

zi ∈ Z+ i = 1, . . . ,m (6)

gk ∈ {0, 1} k ∈ K 1 (7)

hk ∈ {0, 1} k ∈ K 2 (8)

Similarly (but at cost of additional variables and constraints) we can tackle
the case when more than one component bound is needed for branching.
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Branch and Price for the Cutting Stock Problem

Alternative strategy: remember that we can map the items i with demand
di > 1 to dlog die separated items il , l = 0, . . . , dlog die. Thus we keep
columns S of original items in the master problem and columns S̄ of

”new” items in the slave: aSi =
∑dlog die

l=0 2laS̄il .

Select and item il such that
∑

S<−>S̄,il=1 xs = α is fractional.

Branch by imposing integrality of α.

In the slave problem, we only have to modify the profit (dual variable)
associated with item il .
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2D Packing and Cutting

2D Packing and Cutting
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2D Packing and Cutting

Problem: given a set of 2D items of whatever shape, obtain the requested
items by minimizing the use of stock material, or maximize the profit of
items obtained from the available stock material.

Common restrictions:

Often it is assumed that items are rectangular and the stock is
rectangularly shaped as well (bins or strips), in addition, items are
obtained from the stock with vertical or horizontal cuts;

general model: space is discretized and no overlapping of the items is
imposed.
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2D Packing and Cutting

Additional features may be considered depending on the way the items are
obtained from the stock:

guillotine cuts, i.e., cuts that are parallel to the sides of the stock and
cross the stock from one side to the other;

staged cutting, where each stage consists in a set of parallel guillotine
cuts performed on the shape obtained in the previous stage.

2 staged guillotine cutting produces shelves, i.e., slices of the stock
rectangle with the same width, and height coincident with the height
of the tallest item cut off from it.

items may or may not be rotated;

bins or strips of different size may be available.
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2dimensional 2staged Guillotine Knapsack Problem
(2DKP)

We are given a unique rectangular stock with height H and width W , and
a list of m rectangular shapes to be cut. Each shape’s type i
(i = 1, . . . ,m) is characterized by a height hi , a width wi , a profit pi , and
an upper bound ubi indicating the maximum number of items of type i
which can be cut.
The problem calls for the determination of a 2staged Guillotine cutting
pattern maximizing the sum of the profits of the cut items.
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2DKP - Gilmore and Gomory

Let S := {1, . . . ,NS} be the set of all “feasible” shelves, satisfying the
condition:

m∑
i=1

wi r
s
i ≤W

where r si (0 ≤ r si ≤ ubi , i = 1, . . . ,m) denotes the number of items with
shape’s type i which are cut from shelf s. Let As and Ps be the height and
the profit of shelf s:

As := max{hi : r si > 0, i = 1, . . . ,m} and Ps :=
m∑
i=1

pi r
s
i
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2DKP - Gilmore and Gomory

By using integer variables ys , s ∈ S, the model reads:

max
∑
s∈S

Psys∑
s∈S

r si ys ≤ ubi (i = 1, . . . ,m)∑
s∈S

Asys ≤ H

ys ∈ Z (s ∈ S)

By relaxing the integrality of the variables to ys ≥ 0 we get the master
model. Dual constraints of the master read:

Ps ≤ ρAs +
m∑
i=1

πi r
s
i (∀s ∈ S)
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2DKP - column generation

Columns with negative reduced cost can be detected by solving a BKP for
each possible value of As , restricted to items with hi ≤ As :

Z (BKP) := max
m∑
i=1

(pi − πi )ri

subject to
m∑
i=1

wi ri ≤W

0 ≤ ri ≤ ubi integer (i = 1, . . . ,m)

If there exists a feasible shelf s such that Z (BKP) > ρAs , then s is added
to the master, otherwise the latter is optimally solved (one slave problem
for each height).
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2DKP - compact model (Lodi - Monaci, 2003)

For each item type i (i = 1, . . . ,m), define ubi identical items j . Let
n =

∑m
i=1 ubi be the overall number of items, ordered in such a way that

h1 ≥ h2 ≥ · · · ≥ hn. The model assumes that n potential shelves may be
initialized: shelf k , if used, must be initialized by item k (k = 1, . . . , n).
We use the following binary variables:

xjk =

{
1 if item j is cut from shelf k
0 otherwise

(k = 1, . . . , n; j = k, . . . , n)

For each variable xkk (k = 1, . . . , n), xkk = 1 implies that shelf k is used
and initialized by its corresponding item.
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2DKP - compact model (M1 Lodi - Monaci, 2003)

The model is then as follows:

M1 max
n∑

j=1

pj

j∑
k=1

xjk

j∑
k=1

xjk ≤ 1 (j = 1, . . . , n)

n∑
j=k+1

wjxjk ≤ (W − wk) xkk (k = 1, . . . , n − 1)

n∑
k=1

hkxkk ≤ H

xjk ∈ {0, 1} (k = 1, . . . , n; j = k, . . . , n)
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2DKP - compact model (M2 Lodi - Monaci, 2003)

Consider the items with the same shape’s type together, but separate
them with respect to the initialization of the shelves.
Any item of type i may be cut from shelves in [1, αi ], with αi =

∑i
s=1 ubs

(i = 1, . . . ,m) and α0 = 0.
Any shelf k can be used to cut items in [βk ,m], with
βk = min{r : 1 ≤ r ≤ m, αr ≥ k} (k = 1, . . . , n). Thus, βk (k = 1, . . . , n)
denotes the item type initializing shelf k .
Assuming h1 ≥ h2 ≥ · · · ≥ hm, we have a first set of integer variables:

xik =

{
number of items of type i cut from shelf k if i 6= βk
number of additional items of type i cut from shelf k if i = βk

where i = 1, . . . ,m; k ∈ [1, αi ].
A second set involves the following binary variables:

qk =

{
1 if shelf k is used
0 otherwise

(k = 1, . . . , n)
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2DKP - compact model (M2 Lodi - Monaci)

The model is then as follows:

M2 max
m∑
i=1

pi (

αi∑
k=1

xik +

αi∑
k=αi−1+1

qk)

αi∑
k=1

xik +

αi∑
k=αi−1+1

qk ≤ ubi (i = 1, . . . ,m)

m∑
i=βk

wixik ≤ (W − wβk )qk (k = 1, . . . , n)

n∑
k=1

hβkqk ≤ H

0 ≤ xik ≤ ubi integer (i = 1, . . . ,m; k ∈ [1, αi ])

qk ∈ {0, 1} (k = 1, . . . , n)
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2DKP - compact model (M2 Lodi - Monaci)

The LP relaxation of M2 is allowed to split an item into one parts, one
initializing the shelf (q part) and some others which can be packed as
“additional” parts (x parts).
Hence, the profit of the item is possibly taken into account completely,
while the height of the shelf is only partially paid.

To avoid this drawback we add the following inequality:

αi∑
s=k

xis ≤ ubi − (k − αi−1) (i = 1, . . . ,m; k ∈ [αi−1 + 1, αi ])
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2dimensional 2staged Guillotine Bin Packing Problem
(2DBPP)

We are given infinitely many identical stock rectangles with height H and
width W , and a list of m rectangular shapes to be cut. Each shape’s type
i (i = 1, . . . ,m) is characterized by a height hi and a width wi .
The problem calls for the determination of the 2staged guillotine cutting
patterns needed to obtain all items by minimizing the number of used
stock rectangles.
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2DBPP - compact model (Lodi - Martello - Vigo, 2004)

Sort items so that h1 ≥ h2 ≥ · · · ≥ hn. The model assumes that n
potential levels are available, each associated with a different item i which
initializes it, hence having the corresponding height hi .

yi =

{
1 if item i initializes level i
0 otherwise

(i = 1, . . . , n)

Only items j satisfying j > i may be packed in level i (if this level is
actually initialized by item i). Therefore the item packing is modeled by

xij =

{
1 if item j is packed into level i
0 otherwise

(i = 1, . . . , n − 1; j > i)
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2DBPP - compact model (Lodi - Martello - Vigo)

Similarly, we assume that n potential bins are available, each associated
with a potential level k which initializes it.

qk =

{
1 if level k initializes bin k
0 otherwise

(k = 1, . . . , n)

Only levels i satisfying i > k may be allocated to bin k (if this bin is
actually initialized by level k). Therefore the level packing is modeled by

zki =

{
1 if level i is allocated to bin k
0 otherwise

(k = 1, . . . , n − 1; i > k)
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2DBPP - compact model (Lodi - Martello - Vigo)

The ILP model follows:

min
n∑

k=1

qk

j−1∑
i=1

xij + yj = 1 (j = 1, . . . , n)

n∑
j=i+1

wjxij ≤ (W − wi )yi (i = 1, . . . , n − 1)

i−1∑
k=1

zki + qi = yi (i = 1, . . . , n)

n∑
i=k+1

hizki ≤ (H − hk)qk (k = 1, . . . , n − 1)

Packing and Cutting Problems (E. Malaguti) 39



2DBPP - compact model (Lodi - Martello - Vigo)

yi ∈ {0, 1} (i = 1, . . . , n)

xij ∈ {0, 1} (i = 1, . . . , n − 1; j > i)

qk ∈ {0, 1} (k = 1, . . . , n)

zki ∈ {0, 1} (k = 1, . . . , n − 1; i > k)
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2DBPP - 2DCSP Set Covering Model

Set covering model;

Column generation;

Branching.

The same considerations discussed for the one dimensional BPP and CSP
apply to the 2dimensional case, with a suited definition of the variables.
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Real world cutting applications

In some industries, e.g., wooden panel cutting, the cutting equipment
productivity can be maximized by cutting several patterns in parallel.
Since the cutting pattern must be the same for all the boards, parallel cut
limits the opportunities of stock usage minimization.
In addition to xj , integer variables yj denote the number of cutting cycles
which are needed to obtain xj patterns, namely, yj = dxj/κe, where κ is
the maximum number of patterns that can be cut in parallel.

min
n∑

j=1

(cjxj + ejyj)

n∑
j=1

pijxj ≥ di i = 1, . . . ,m

yj ≥
xj
κ

j = 1, . . . , n

xj ∈ Z+, yj ∈ Z+ j = 1, . . . , n
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free download at http://www.or.deis.unibo.it/knapsack.html
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