
Linear and Integer LinearProgramming

Enrico Malaguti

DEIS - University of Bologna

ECI 2012

Linear and Integer LinearProgramming (E. Malaguti) 1

Outline

1 Optimization Problems
2 Linear Programming

Complexity
Algorithms for LP

3 Integer Linear Programming
4 Strong formulations for ILP

Separation
Column Generation

5 MIP solvers

Linear and Integer LinearProgramming (E. Malaguti) 2

Optimization Problems

Optimization Problems

Linear and Integer LinearProgramming (E. Malaguti) 3

Optimization Problems

x = (x1, . . . , xn) ∈ Rn: vector of decision variables

F ∈ Rn: set of feasible solutions

φ : Rn → R: objective function

Optimization Problem [P]

minφ(x)
x ∈ F

Find x∗ ∈ F (global optimum) such that: φ(x∗) ≤ φ(x), ∀x ∈ F

Linear and Integer LinearProgramming (E. Malaguti) 4

Optimization Problems

in general, φ and F can be whatever (non-continuos,
non-differentiable, etc.)

x∗ may not exists (F = ∅) or may not be unique

there might be local and global minima

0

!

l " F

In general, an algorithm has only a
”local” view of φ and F

Linear and Integer LinearProgramming (E. Malaguti) 5

Optimization Problems

y is a local optimum if it exists a neighborhood N ⊆ F :
φ(y) ≤ φ(x), ∀x ∈ N

e.g. Nε(y) = {x ∈ F : ||y − x || ≤ ε, ε > 0}

[P] requires to find at least one global optimum

We call a feasible solution any z ∈ F

a heuristic algorithm produces feasible solutions z of ”good” quality,
the quality of z is given by φ(z)

Linear and Integer LinearProgramming (E. Malaguti) 6

Problems classification

Problems are classified depending on φ and F .

Generic φ and F : Non Linear Programming (NLP). Great capacity of
modeling real-world, we do not know algorithms for general problems.
Algorithms for specific problems converge to local optima.

φ and F convex: Convex Programming. We know algorithms for
general problems, we can compute global optima.

Linear and Integer LinearProgramming (E. Malaguti) 7

Convex Programming

F is a convex set if: ∀x , y ∈ F , 0 ≤ θ ≤ 1, z = θx + (1− θ)y , we
have z ∈ F .

φ : Rn → R is a convex function if: dom(φ) is a convex set,
∀x , y ∈ dom(φ), φ(θx + (1− θ)y) ≤ θφ(x) + (1− θ)φ(y).

Theorem - If [P] is a Convex Programming Problem, any local optimum is
a global optimum.

Linear and Integer LinearProgramming (E. Malaguti) 8

Linear Programming

Linear Programming

Linear and Integer LinearProgramming (E. Malaguti) 9

Linear Programming

φ : Rn → R is a linear function: ∀x , y ∈ dom(φ), a, b ∈ R, we have
φ(ax + by) = aφ(x) + bφ(y).
F ∈ Rn is defined by a set of linear inequalities:
gi (x) ≥ 0, i = 1, . . . ,m (note that a linear inequality gi (x) ≥ 0
defines a half-space in Rn, whose support is the hyper-plane
gi (x) = 0).

Linear programming is a special case of convex programming.

Notation: gi (x) = ai1x1 + ai2x2 + . . .+ ainxn − bi

LP in Standard Form:

min c ′x

Ax = b

x ≥ 0

where A ∈ Rm×n, c , x ∈ Rn, b ∈ Rm.
Linear and Integer LinearProgramming (E. Malaguti) 10

LP: assumptions

min z = . . .+ chxh + . . .
. . .+ aihxh + . . . ≤ bi

1 Proportionality. The effect of the h-th resource is proportional to its
amount xh:

2 Additivity. There is no interaction among the resources in the
objective function and constraints.

3 Divisibility. Decision variables can get non integer values.
4 Determinism. All the model parameters are given constants, while,

in real-world, parameters are affected by incertitude.

Sensitivity analysis
Stochastic Optimization
Robust Optimization

Linear and Integer LinearProgramming (E. Malaguti) 11

Computational Complexity

Complexity of an algorithm: denotes the number of elementary operations
needed to run an algorithm.

always referred to the size of the input (number of bits needed to
code the input);

always referred to the worst case;

measured in term of order of magnitude through the notation O(.).

Polynomial Algorithm: its running time is bounded above (O(.)) by a
polynomial expression in the size of the input;
Exponential Algorithm: its running time is bounded below (Ω(.)) by an
exponential expression in the size of the input;

Linear and Integer LinearProgramming (E. Malaguti) 12

Computational Complexity

Complexity of a problem (decision):

Class P - polynomial. Problems for which a polynomial time
algorithm exists belong to the complexity class P.

Class NP - Non deterministic polynomial - Intuitively, NP is the set of
all decision problems for which the instances where the answer is
”yes” have efficiently verifiable proofs of the fact that the answer is
indeed ”yes”. More precisely, these proofs have to be verifiable in
polynomial time by a deterministic Turing machine.

Class of NP complete problems. A problem [P] is NP-complete if any
problem in NP can be transformed to [P] in polynomial time.

P = NP??

Linear and Integer LinearProgramming (E. Malaguti) 13

P=NP?

The Simpsons, Treehouse of Horror VI, serie 7, episode 6.

Linear and Integer LinearProgramming (E. Malaguti) 14

Algorithms for LP

Theorem - LP is polynomially solvable.

Simplex Algorithm, non-polynomial, excellent practical behavior;

Ellipsoid Algorithm, used to prove that LP is polynomial, useless in
practice;

Interior Point Methods, polynomial, can solve convex problems in
general;

Linear and Integer LinearProgramming (E. Malaguti) 15

Simplex Algorithm (G. Dantzig, 1947)

Consider a generic Linear Program LP. We have that:

Linear Programming is convex ⇒ any local optimum is a global
optimum;

The feasible region F is a polyhedron (intersection of half-spaces);

(Theorem) - If F has at least one vertex, then either LP is unbounded
or there is an optimal solutions which is a vertex of the polyhedron F ;

So we have a problem (LP) with infinitely many solutions but, to solve it,
it is enough to check a finite number of vertices, and to find a local
optimum (which is global).

Algorithm (geometric): start from a vertex of the polyhedron and
iteratively select an improving (w.r.t. the objective function) adjacent
vertex. When no adjacent vertex improves on the current one, this is
optimum.

Linear and Integer LinearProgramming (E. Malaguti) 16

Simplex Algorithm - Algebraic viewpoint

Consider a standard form LP (min c ′x , Ax = b, x ≥ 0) with A ∈ Rm×n

and x ∈ Rn (m + n constraints including non-negativity). It can be shown
that:

A vertex of a polyhedron corresponds to a feasible solution of the LP
where n constraints are tight (=). We have m tight constraints
Ax = b, so we need n −m tight constraints of the form xf = 0 to
define a vertex. The m variables xb not forced at 0 are called basic
variables (w.l.o.g., let be basic the first m).

The m columns of A corresponding to the xB variables are called a
base B: A = [B|F].

Any vertex corresponds to a solution x = [xB |xF], where
xF = [0, . . . , 0]. The value of the basic variables is xB = B−1b.

Two adjacent vertices x and y differ for 1 column in the bases:
B = [A1, . . . ,Al, . . . ,Am]; B ′ = [A1, . . . ,Al−1,Al+1, . . . ,Am,Aj]

Linear and Integer LinearProgramming (E. Malaguti) 17

Simplex Algorithm - Algebraic viewpoint

When moving from a feasible solution x towards a feasible direction d of a
quantity θ > 0, we get to x + θd . For feasibility, it must be Ad = 0.
Now consider to move from a vertex x to an adjacent vertex y . We have
that:

all the non basic variables remain at 0, with the exception of xj
(which enters the basis), so di = 0, i /∈ B, dj = 1;

the basic variables xB change to xB + θdB :

0 = Ad = Bdb + Ajdj = BdB + Aj

i.e., dB = −B−1Aj .

The cost change along direction d is c ′d = cj + c ′BdB = cj − c ′BB
−1Aj .

This coefficient is called reduce cost c̃j of the variable xj (and has value 0
for basic variables).

Linear and Integer LinearProgramming (E. Malaguti) 18

Simplex Algorithm - Algebraic viewpoint

Starting from a feasible solution x with associated base Bx , the Simplex
Algorithm moves to an adjacent solution y with associated base By such
that c ′y < c ′x (more feasible basis can correspond to the same solution in
case of degeneracy). This happens when ∃j : c̃j < 0 (j /∈ Bx , c̃i = 0,
i ∈ Bx)

Of course, optimality of a solution x means that there is no variable j with
negative reduced cost cj .

In the worst case, the Simplex Algorithm may visit all the exponentially
many vertices of the polyhedron before getting to the optimal one, thus it
is not a polynomial algorithm.

Linear and Integer LinearProgramming (E. Malaguti) 19

interior point methods

Class of algorithms for the solution of convex problems (including LP).

Idea: consider a modified objective function φ′, including a penalty
which grows when the solution is close the the boundary of the
feasible set F . Let δ(x) denote the distance of x from the boundary
of F .

φ′(x) = φ(x) + µ ln δ(x)

The algorithm starts from a solution (point) x in the interior of F . At
each iteration, the algorithm moves along a direction of maximum
decrease of φ′(x) (using Newton methods), and a new solution within
F is obtained. The algorithm converges to an optimal solution on the
boundary of F .

Linear and Integer LinearProgramming (E. Malaguti) 20

Simplex VS Interior Point Methods

Interior Point Methods are on average faster in solving LPs from
scratch;

The Simplex Algorithm allows a ”warm start”, so one can:

modify the objective function coefficients;
modify the right-hand-side;
add variables;
add constraints;

and re-optimize by starting from a previously computed solution.

The Simplex Algorithm provides several useful information in addition
to the optimal solution, like reduced costs, dual variables, etc.

Linear and Integer LinearProgramming (E. Malaguti) 21

Integer Linear Programming

Integer Linear Programming

Linear and Integer LinearProgramming (E. Malaguti) 22

Integer Linear Programming - ILP

φ : Rn → R is a linear function.

the feasible region F is the intersection of a polyhedron P ∈ Rn

defined by a set of linear inequalities:
P = {x | gi (x) ≥ 0, i = 1, . . . ,m} and the set of integer numbers Z.

min c ′x

Ax ≥ b

x ∈ Zn

We talk about Mixed-Integer Linear Programming (MILP) when only a
subset of the variables are integer.

Theorem - Integer Linear Programming is NP-complete.

Linear and Integer LinearProgramming (E. Malaguti) 23

ILP - Lower and Upper Bound

Relaxation of problem [P]: problem obtained by ”relaxing” some of the
requirements of [P]. Relaxed problems are in general easier to solve (e.g.,
original problem is NP-complete, relaxed problem is polynomial).

Continuous Relaxation: obtained by relaxing the integrality requirement for
the variables, provides a lower bound on the optimal solution value of [P].

Minimization Problem

- upper bound (integer feasible solution)

- optimal solution (integer optimal)

- lower bound (e.g., optimal solution of the continuous relaxation)

Linear and Integer LinearProgramming (E. Malaguti) 24

Branch-and-Bound

Branch-and-Bound is a general method for solving optimization problems
with a finite number of solutions, which can be applied to combinatorial
problems and ILP. It consists in the implicit enumeration of all the possible
solutions to the problem.
Branch-and-Bound has two main components:

1 A splitting procedure (branching) that, given a set of candidate
solutions S , returns two or more subsets S1 and S2 such that
S = S1 ∪ S2. Each set Sj is associated with a problem [Pj], that is,
[P] solved on Sj .

2 An evaluating procedure (bounding) which relaxes the problem and
computes a lower bound on any [Pj], that is, a bound on the optimal
value of the objective function φ on Sj .

The original problem [P] is iteratively split into smaller problems, and the
search is represented through a decision tree.

Linear and Integer LinearProgramming (E. Malaguti) 25

Branch-and-Bound

!"#$%$#&'"
(!")*"+,-$&"
./!+012"
/10+34!+56"

7,,8"+,-$"

Branch-and-Bound has exponential complexity.

Linear and Integer LinearProgramming (E. Malaguti) 26

Branch-and-Bound: Algorithm

Initialization: LB = 0 (or LB = −∞), UB = +∞;
Add [P] to the list of active problems;

1 Select an active problem Pj and compute a lower bound LB(Pj) by
solving a relaxation of Pj (bounding);

2 If LB(Pj) ≥ UB return (pruning). Includes the case when Pj is
infeasible (LB(Pj) = +∞);

3 If the solution of the relaxation is feasible we have a feasible solution
(UB) to [P]. If the solution is better than UB, update UB, return;

4 If the solution of the relaxation is feasible, return;

5 Split the set Sj of candidate solutions for Pj in Sj1 and Sj2
(branching), add the associated problems Pj1 and Pj2 to the list of
active problems (and remove Pj);

6 Go to 1.

Linear and Integer LinearProgramming (E. Malaguti) 27

Branching

Branching is the split of the current problem (defined by the set of
candidate solutions) in two or more subproblems.

combinatorial algorithm: select/forbid an item, arc, choice (e.g.,
KP01);

ILP problem P: select the branching variable, e.g., the most fractional
variable (let it be x1);

create the subproblems P1 and P2:

[P1] := [P], x1 ≤ bx1c [P1] := [P], x1 ≥ dx1e

Linear and Integer LinearProgramming (E. Malaguti) 28

Search Strategy

Defines the way the next active problem (node) is selected during the
search.

Depth first

!"

#"

$"

%"&"!'"!%"

("

)"*" +"!#" !!"!)" !$"

Linear and Integer LinearProgramming (E. Malaguti) 29

Search Strategy

Defines the way the next active problem (node) is selected during the
search.

Breadth first

!"

#"

!$"

%"&"$"'"

("

!'"!(" !#"!)" !!"*" +"

Linear and Integer LinearProgramming (E. Malaguti) 30

Search Strategy

Best first

Select the problem (node) having the best (i.e., smallest) lower bound. It
requires to solve the relaxation of all the active nodes (computationally
expensive). It reduces the number of explored nodes (on average).

Linear and Integer LinearProgramming (E. Malaguti) 31

Cutting planes

Solve the continuous relaxation of the problem by iteratively adding
additional constraints (valid inequalities or cuts) such that:

the current fractional solution violates the added cuts;

no integer solution violates the added cuts (which are thus valid)

By adding cuts, the feasible region is reduced: the obtained lower bound is
improved at each iteration.

- upper bound (integer feasible solution)

- optimal solution (integer optimal)

- lower bound strengthened by valid inequalities
(e.g., optimal solution of the continuous relaxation+inequalities)

- lower bound (e.g., optimal solution of the continuous relaxation)

Linear and Integer LinearProgramming (E. Malaguti) 32

Cutting planes

Example:

max x1 + x2 + x3 (1)

x1 + x2 ≤ 1 (2)

x2 + x3 ≤ 1 (3)

x3 + x1 ≤ 1 (4)

x1, x2, x3 ∈ Z (ILP) (5)

consider the relaxation x1, x2, x3 ≥ 0
and the valid inequality x1 + x2 + x3 ≤ 1 (clique inequality).

Linear and Integer LinearProgramming (E. Malaguti) 33

Strong formulations for ILP

Strong formulations for ILP

Linear and Integer LinearProgramming (E. Malaguti) 34

Strong formulations for ILP

We will see in the following lectures that different ILP formulations provide
different continuous relaxations, with a strong impact on the practical
solvability of the problem.

Theorem - For any ILP, there exists an LP formulation whose optimal
solution is integer (thus feasible and optimal for the ILP).

Unfortunately, this ideal formulation has in general exponentially
many inequalities, and it is NP-complete to generate one of these
inequalities.

However, producing some ”strong” inequalities which improve the LB
provided by the continuous relaxation can be very useful for the
solution of generic ILPs.

Linear and Integer LinearProgramming (E. Malaguti) 35

LP Models with ”too many” constraints

Solving an ILP with exponentially many constraints (like the TSP model)
asks to solve an LP with the same constraints (and then apply B&B).
Consider the generic LP:

min c ′x

Ax ≥ b

x ≥ 0

where A is too large to be explicitly given to an LP solver.

Key observation: not all the constraints are active at an optimal solution.
Thus, consider a subset of them which are enough.

Linear and Integer LinearProgramming (E. Malaguti) 36

Separation Algorithm

1 Initialize Ã, b̃ with a subset of the constrains defined by A and b

2 Solve the corresponding LP and get x∗:

min c ′x

Ãx ≥ b̃

x ≥ 0

3 If x∗ satisfies all the constraints Ax ≥ b then it is optimal for the
complete problem, otherwise add the violated constrains and go to 2)

The crucial point is checking the condition (3) (separation).
Theorem - (Grötschel, Lovász, Schrijver, 1981) - If (3) can be solved in
polynomial time, the whole procedure converges in polynomial time.

Observation If we stop the Separation Algorithm before convergence, we
have a lower bound on the optimal solution value of the LP.

Linear and Integer LinearProgramming (E. Malaguti) 37

LP Models with ”too many” variables

Solving an ILP with exponentially many variables asks to solve an LP with
the same variables (and then apply B&B).
Consider the generic LP:

min c ′x

Ax ≥ b

x ≥ 0

where A has too many columns to be explicitly given to an LP solver.

Key observation: At most m basic variables have a value > 0 at an
optimal LP solution. The simplex algorithm explores a (hopefully) small
subset of the polytope vertices to find the optimal solution. Thus, there is
no need to explicitly consider all the problem variables.

Linear and Integer LinearProgramming (E. Malaguti) 38

Column Generation Algorithm

1 Initialize Ã, b̃ and x̃ with a subset of the columns containing a feasible
solution.

2 Solve the corresponding LP and get x∗ and an associated base B (or
dual solution y∗ = cBB

−1):

min c ′x

Ãx ≥ b̃

x ≥ 0

3 If (x∗, y∗) is optimal for the original problem, stop. Otherwise,
compute a variable which would reduce the solution cost, add it to Ã
and go to (2)

The crucial point is checking optimality in (3) (column generation).
Theorem - (Grötschel, Lovász, Schrijver, 1981) - If (3) can be solved in
polynomial time, the whole procedure converges in polynomial time.

Observation - If we stop the Column Generation before convergence, we
have an upper bound on the optimal solution value of the LP (useless).
Linear and Integer LinearProgramming (E. Malaguti) 39

Column Generation - Optimality Condition

Checking whether an optimal solution (x∗, π∗) to the reduced problem is
optimal for the complete problem, asks to check if there exists a variable
xj with negative reduced cost: c̃j = cj − c ′BB

−1Aj < 0. Here Aj /∈ Ã,
otherwise it would enter the base.

∃Aj : cj − c ′BB
−1Aj < 0?

i.e., since c ′BB
−1 = π∗ (dual optimal solution),

∃Aj : cj − π′∗Aj < 0?

Equivalently, does it exist a violated dual constraint?
Note that here π∗ is a parameter.

Linear and Integer LinearProgramming (E. Malaguti) 40

MIP solvers

MIP solvers

Linear and Integer LinearProgramming (E. Malaguti) 41

MIP solvers

Modern MIP solvers are all based on a Branch-and-Cut framework: at
each node of the B&B, the solver generates some inequalities (cuts) to
improve the LB associated with the node.
In addition, MIP solvers include:

preprocessing;

primal heuristics;

improved search strategies;

etc.

Linear and Integer LinearProgramming (E. Malaguti) 42

MIP solvers

There are several available MIP solvers, with different capabilities and
licensing. When comparing MIP solvers, consider the following:

Capability: what kind of problems can be solved;

Capability: what kind of models can be solved;

Performance (profiling problem);

Licensing;

Documentation, friendliness, debug level.

Linear and Integer LinearProgramming (E. Malaguti) 43

	Optimization Problems
	Linear Programming
	Complexity
	Algorithms for LP

	Integer Linear Programming
	Strong formulations for ILP
	Separation
	Column Generation

	MIP solvers

